Steel Buildings in Europe

Part 5: Joint Design 5 – 7 2.2.2.1 For a single notched beam: For low shear (i.e. V Ed ≤ 0,5 V pl,N,Rd ) M v,N,Rd = M0 el,N,y y,b  f W [Reference 4] For high shear (i.e. V Ed > 0,5 V pl,N,Rd ) M v,N,Rd = M0 el,N,y y,b  f W                   2 pl,N,Rd Ed 1 1 2 V V [Reference 4] 2.2.2.2 For double notched beam: For low shear (i.e. V Ed ≤ 0,5 V pl,DN,Rd ) M v,DN,Rd = 2 nb nt b M0 y,b w ) ( 6 h d d f t    [Reference 4] For high shear (i.e. V Ed > 0,5 V pl,DN,Rd ) M v,DN,Rd =                       2 DN,Rd pl, Ed 2 nb nt b M0 y,b w 1 1 2 6 V V h d d f t  [Reference 4] V pl,N,Rd is the shear resistance at the notch for single notched beams V pl,N,Rd = M0 v,N y,b 3  f A A v,N = A Tee – bt f + ( t w + 2 r ) 2 f t A Tee is the area of the Tee section V pl,DN,Rd is the shear resistance at the notch for double notched beams V pl,DN,Rd = M0 y,b v,DN 3  f A A v,DN = t w ( h b – d nt – d nb ) where: W el,N,y is the elastic modulus of the section at the notch d nt is the depth of the top notch d nb is the depth of the bottom notch

RkJQdWJsaXNoZXIy MzE2MDY=